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Potential flow past a porous body of arbitrary shape with constant physical 
permeability Ic,, as well as the flow in the corresponding porous medium, are analysed 
by means of a pair of linear Fredholm integral equations of the second kind. As an 
example for verification of the proposed general method, the case of a two-dimensional 
porous circular cylinder is worked out in detail. 

1. Introduction 
Potential flow past a non-permeable rigid body is a very well-known subject; 

however, ignorance has reigned when the body is permeable. In  this paper the problem 
of determining the potential flow past a porous body of arbitrary shape with physical 
permeability constant k,, as well as the flow in the corresponding porous medium, 
are analysed. The flow exterior to the body is subject to  an asymptotically constant 
prescribed velocity at infinity, and the corresponding potential function is postulated 
to be a linear combination of two potentials. One represents the flow past a solid body 
with the same geometrical configuration as the given porous body, whose asymptotic 
behaviour a t  infinity coincides with that of the overall flow. The other potential 
is defined to behave at infinity in such a way that its gradient tends to  zero faster 
than the corresponding velocity of a source located inside the body, since the net flux 
across the porous body has to be zero ; in other words, all the fluid mass coming into 
the porous body will return to the exterior flow. The flow interior to the body is 
represented as a potential flow with the corresponding pressure related to  the seepage 
velocity by Darcy’s law. 

The first exterior potential flow corresponding to  flow past a solid body is 
determined by means of a linear Fredholm integral equation of the second kind in 
a standard manner. The flux-matching condition on the porous-body surface allows 
the representation of both the interior potential flow and the second exterior potential 
flow as one double-layer potential defined throughout all space, whose density is 
determined from a nonlinear integral equation resulting from the pressure,-matching 
condition. A formal solution to this nonlinear equation is found in terms of the 
solution to a certain linear integral equation when a dimensionless parameter K* is 
small. A discussion of d’Alembert’s paradox and the force on a porous obstacle is 
also presented. 

As a check on the proposed general method, the case of two-dimensional flow 
around a porous circular cylinder is worked out in detail. 
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FIGURE 1 

2. Integral-equation solution of the problem 
Consider a porous body B with physical permeability constant KO occupying a 

three-dimensional domain 52, bounded by a closed Liapunov surface S such as defined 
in Gunter (1967, p. l ) ,  and let 52, be the complement of Qi, as shown in figure 1 .  

Assume that throughout 52, there exists a potential flow (‘exterior flow’) of a 
constant density p,  with a prescribed uniform asymptotic behaviour a t  infinity. Hence 
the potential # describing the flow 52, must satisfy 

Vz#(xl, x2, x 3 )  = 0 for every point XEQ,, ( 1 )  

lim V#(xl, x2, x 3 )  = (U, 0,O) uniformly, 
r+oo 

where r = (x;+x$+x$, U is a given scalar velocity, and ( x ~ ,  x2, x3) are Cartesian 
coordinates with fixed origin 0 chosen inside the body. Since the problem under 
consideration deals with a fluid of constant density in an enclosed system, without 
free surface, the dynamic pressure P, in 52, is given by Bernoulli’s law as 

(3) 

Part of the flow in 52, seeps through the porous body B, entering and exiting 
through the surface pores on S. The flow seeping through B will be represented as 
a potential flow, with the corresponding dynamic pressure pi related to the seepage 
velocity Vqbi by Darcy’s Law, and thus the potential #i describing the flow in 52, has 

P,(z) = &I { U2 - [Vq5(z)]z} for every point z E SZ,. 

to satisfy 
V2#i(x1, x2, x3) = 0 for every point ~ € 5 2 ~  (4) 

( 5 )  
P, and V p i ( x 1 > ~ 2 > ~ 3 )  = -- V#i(Xl>x2>~3)> 
I%” 

or equivalently 

(6) 
ru e ( x l ,  x2, x 3 )  = -- #i(xl, x2 ,  x3) for every point ~ € 5 2 , .  
4 

The flow state (VC$~, P,)  will be called the ‘interior porous flow’ from now on. 
On the surface S (of the porous body) it can be said that the dynamic pressure does 

not experience a jump as the flow enters or exits the body B through 8 ;  and, assuming 
that there are no sources or sinks of fluid on S ,  the following matching conditions for 
both flux and pressure must hold: 

(7) 

(8)  
for every point x* E S, 

n(x*).V#(x*) = n(x*)-V#,(x*), 

lim, +{[V#(x)]2- Uz} = lim - A ( x )  P’ 
x-tx x+x* ko 
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where n(x*) is the normal to S a t  x* directed into SZ,, and the dot indicates the usual 
scalar product in three-dimensional space. The products appearing in (7)  must of 
course be understood as limiting values of the directional derivatives of $ and $i in 
the direction n(x*) as the point of evaluation tends to x*. 

I n  order to  find functions $ and $i satisfying ( l ) ,  (2), (4), (7)  and (8), we shall express 
q5 as a linear combination of two auxiliary potential functions and q5:: 

$ = $1 +K*& (9) 

where K* = kopU/pD is a new dimensionless physical parameter, which will be 
assumed to be much less than unity in order to linearize the matching condition (8), 
and D is a representative dimension of the body. 

is taken to be the usual potential flow around a solid body of the same 
geometrical configuration as that  of the given porous body B,  and thus $1 satisfies 

Vz$l(z) = 0 for all XESZ,, (10) 

lim V$,(x) = ( U ,  0,O) uniformly, 
5’02 

n(x).V$,(z) = 0 for all XES. (12) 

The problem defined by (lo)-( 12) is readily found to reduce to an ordinary exterior 
Neumann problem with vanishing gradient a t  infinity for an auxiliary potential 
function $I by simply writing 

$,(x) = uxI+$;w. (13) 

n(x*)*V$;(x*) = - Unl(x*) for all x*ES, (14) 

Obviously, the potential function $I must satisfy the following Neumann boundary 
condition : 

where n = (ml, mz, n3). 
The above boundary condition, together with the vanishing asymptotic behaviour 

of V$; a t  infinity, are sufficient conditions to  guarantee the uniqueness of potential 
functions r& solving this exterior Neumann problem up to  additive constants. 

Since single-layer surface potentials with continuous density spread over a 
Liapunov surface 8 (as defined by (15) below) do have a vanishing gradient a t  
infinity, are continuous throughout space, and their normal derivatives experience 
a jump across 8, i t  is most natural, in the light of Fredholm’s integral-equation 
approach for the solution of boundary-value problems, to  seek the solution $I as one 
such single layer with unknown density ( - $)/27c : 

where dS, is the surface-area element a t  point y = (y,, yz, y3) E S, and 
3 

Using the well-known limiting value as the point 1: tends to a point x* E S of the 
directional derivative of a single-layer potential in the direction n(z*) (see Gunter 
1967, p. 125), the following Fredholm integral equation of the second kind is found 

3 2  
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for the unknown continuous density 6 by virtue of (14) : 

for all x* ES, where rx.y is the vector directed from x* to  y. 
The above non-homogeneous linear equation of the second kind, being the adjoint 

of the integral equation corresponding to the interior Dirichlet problem, was shown 
to have a unique solution in the two-dimensional case by Fredholm (1900) and by 
Gunter (1967, p. 152) in the present situation of Liapunov surfaces S embedded in 
Euclidean three-dimensional space. 

The analytical solution of (16) is given by means of the following uniformly 
convergent modified Neumann series for 6 (see Gunter 1967, pp. 152, 127) : 

&x*) = -*[60(x*)- (41(x*)-$o(~*)) + td,(x*)-61(X*))..*l> (17) 

where the terms of the series (17) are calculated recursively a t  x* E S by the following 
formulae : 

6&*, = - Urn,@*), 

The above series can be used as a basis for a numerical solution with a reasonable 
efficiency, profiting from the recursive character of the integrals to be evaluated, 
much in the same manner as the successive approximations solution discussed by 
many authors like Swarztrauber (1973) and Chow, How & Landweber (1976). 
Alternatively, (16) could be solved numerically in a direct manner by means of 
discretization of the surface integral, leading to  an algebraic linear system of 
equations. 

The second auxiliary potential function 4; is defined to  behave at infinity in such 
a way that its gradient tends to  zero faster than r--2, where r is the distance from 
the origin inside the body and a point XEQ,, since the source behaviour a t  infinity 
is not possible because the matching condition (7) implies no net flux across the 
surface of the porous body. Hence 

V'+$z(x) = 0 for all ZEQ,, (19) 

with n > 2 for large r .  V$;(x) - - (20) 
1 

rn 

It can be seen that q5 defined by (9) satisfies (1) because of (10) and (19), and satisfies 
(2) because of ( 1  1 )  and (20). 

Obviously, (19) and (20) do not suffice to  determine #;, since the boundary values 
of $: on S are not prescribed, and likewise the boundary values of q5i are not known 
beforehand. It will be seen presently that the matching conditions (7) and (8) actually 
determine such boundary values of 4; and q5i. 

Because of (9) and (12) the following must hold : 

n(z*)*V+(z*) = n(z*)*VK*$z(x*) for all x* ES. (21 ) 

Considering (7)  and (21), i t  is convenient to introduce in Qi another auxiliary 
potential function &'such that 

#i = K*&'. (22) 
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From (4), (22) ,  (7) and ( 2 l ) ,  one can see that $: must satisfy 

Vz$;(x) = 0 for all xeQi,  (231 

n(z*).V$;(z*) = n(z*).v$:(x*) for all x* E S .  (24) 

Because of (24) ,  4; and #: can be thought of as continuing each other across S in 
such a way that their normal derivatives do not experience a jump across S. In the 
light of Liapunov's theorem on the continuity of normal derivatives of double-layer 
potentials (see Gunter 1967, p. 297), the no-jump condition (24)  suggests the choice 
of $; and #: as restrictions to Qi and 0, respectively of a double-layer potential W 
with unknown density v/2n spread over S ,  i.e. 

where the subscripts i and e are used when xeQi or XEQ, respectively. 
The choice automatically satisfies (19), (20), ( 4 )  and the matching condition (7 )  

when v is sufficiently regular by virtue of the abovementioned Liapunov's theorem, 
so that, in order to solve completely the problem, it only remains to  satisfy the 
pressure-matching condition (8). 

By virtue of (9) and (22), the matching condition (8) can be written as 

2 u  
lim, (V($, + K*#'J)2 (2) - U2 = - lim $;(z) for all x* E S. 
x+x D x+x* 

Using the well-known limiting values a t  Sof double-layer potentials with continuous 
densities spread over Liapunov surfaces (see Gunter 1967, p. 49)  given by (27) and (28)  
below, i t  can be seen after their substitution into (26) that this pressure-matching 
condition amounts to a nonlinear integral equation for the unknown density v ,  which 
we shall linearize for small values of the parameter K* : 

Since both $: and $: are functions of the same unknown density v, it follows that, 
if (26) is satisfied, then v and all the more $; and $:, must be functions of the parameter 
K*. Then perturbation solutions can be assumed for v ,  $;, 4: in terms of the small 
parameter K* : 

v = v , + K * v , + ( K * ) ~ v ~ +  ..., (29) 

$6; = #;, + K*& + (K*)2 f& + . . . , 
#: = $io + K*$,", + (K*)' $g2 + . . . 

It should be noted that, under fairly general conditions upon the density 6 (like 
Holder continuity), the single-layer potential 4; = $, - Ux, possesses limiting 
tangential derivatives a t  points of S (Gunter 1967, p. 68), and this fact together with 
(16)  assures the existence of the limiting value of V$, at points of 8, because the 
right-hand side of the integral equation (16)  for the density 6 is Holder continuous 
on S since S is a Liapunov surface, the same is true of its solution 6 (Gunter 1967, 
p. 61) .  
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Substituting (27) into (26) results in the following linear Fredholm integral 
equation of the second kind for the zeroth-order approximation vo to  the unknown 

for all x* E S, where the function f is defined on S by 

D 
f ( z * )  = -;.?YO+- lim (V$,)2 (x). 

2 x+x* 
(33) 

The right-hand side of the non-homogeneous Fredholm integral equation (32), 
defined by (33), is completely known after explicitly determining q51, and (32) has a 
unique solution vo for arbitrary continuous right-hand side. 

The analytical solution of (32) is given by means of the following uniformly 
convergent modified Neumann series for vo (see Gunter 1967, pp. 199, 180): 

(34) vo(x*) = i[vi(x*) - (v;(x*) - ui(x*)) + (vi(x*) - v;(x*)) - . . .], 
where the terms of this series are calculated recursively a t  x* E S by the formulae 

where vA(x*) = f (x*) ,  and n is a positive integer. 
The remarks concerning the numerical solution of (16) apply also to (32). 
With the solution vo, the zeroth-order approximation potentials q5:o and $Eo are 

given by 

Higher-order approximation potentials can be computed by a similar scheme. 
Summarizing, having found q5: (and also q5: having the same dipole density) solving 

linear integral equations like (32). and q51 by solving the linear integral equation (16), 
the potential function g5 for the exterior flow is obtained through (9), and $i, the 
potential function for the interior porous flow, through ( 2 2 ) .  

The preceding formulation can be extended immediately to  non-constant prescribed 
gradient fields a t  infinity with zero divergence, for which the corresponding dynamic 
pressure a t  infinity is given by Bernoulli's law. Also the extension to the case of flows 
past a finite number of porous bodies, all of them with the same permeability constant, 
does not present new theoretical difficulties in this integral-equation approach. 

Finally, the analogous two-dimensional problem is treated formally in the same 
way, considering distributions of sources and dipoles over the boundary curves of the 
two-dimensional regions corresponding to  the porous media, recalling that the 
two-dimensional source is given by logr instead of l / r ,  and the two-dimensional 
dipole is given by cos (rxy, n(y ) ) / r z ,  instead of cos (rxy, n(y ) ) / r& .  

3. On d'Alembert's paradox 
The total force Fexerted by a uniform inviscid potential flow surrounding a porous 

body arises from the exterior pressure P' a t  the body surface, so that the total force 
will be the following surface integral : 
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FIQURE 2 

where (3) has been used to relate the exterior pressure with the exterior velocity field 
and also the fact that  the surface integral of U2n is zero for any closed surface. 

Substituting (9) into (37), the total force can be written as 

F =  pK* js V$:.V$lndS+O(K*2), 

since the surface integral of (V$Jzn is zero, because this integral corresponds to the 
total force exerted by a uniform potential flow on a solid body of the same geometrical 
configuration as that  of the given porous body, and this force is known to be zero 
(d’Alembert’s paradox). 

Figure 2 shows a porous body of arbitrary shape; the surface of the body is denoted 
by S and the unit outward normal to S ,  locally, is denoted by n. A spherical control 
surface So of radius R, is set up around the body, and no is the unit outward normal 

Applying Gauss’ theorem on the volume V, bounded by So and 8, the ith 
to So. 

component of the total force is given by : 

The volume integral in the above equation can be decomposed as the sum of two 
integrals : 

where the irrotational character of both flows has been used. Again applying Gauss’ 
theorem to the right-hand side of (40) and substituting into (39), the expression for 
the force F, becomes: 

where the zero Neumann boundary condition for $1 ((i3,h1/axi) nj = 0) has been used. 
Using the behaviour of the gradients a t  infinity for both potentials, where $1 was 

defined to behave a t  infinity in such a way that its gradient tends to a constant value 
( U ,  0 , O )  and the gradient of 4: tends to zero like r-3 (since 4; is a double-layer 
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FIQIJRE 3 

potential), it can be concluded that when R, tends to infinity the first surface integral 
in (41) tends to zero. Then 

Since (a$:/ax!) ni on the body surface S is generally different from zero, and it is 
part of the solution of the present problem, it is not possible to determine beforehand 
from (42) the existence or non-existence of the hydrodynamic force exerted on the 
body by a uniform potential flow without a complete knowledge of the exterior 
velocity field for a given problem. However, one expects the existence of the force, 
because the internal flow is the seepage of a viscous fluid. 

4. Two-dimensional potential flow past a porous circular cylinder 
In order to verify the above general method of solution for the potential flow about 

an arbitrary porous body in otherwise-uniform flow, based on a pair of Fredholm 
integral equations, the case of a two-dimensional flow past a porous circular cylinder 
will be solved, since it is one of the few cases where the proposed integral equations 
admit simple closed-form solutions. In this case q5; will correspond to the potential 
of a two-dimensional irrotational flow due to a moving solid circular cylinder : 

(43) 

(44) 

a2 
R 

q 5 ; ( ~ )  = U-~058. 

And $1 is given by (bl(x) = URcos8 ( 1 + -  3 , 
where R is the radial distance from the centre of the cylinder to an exterior point 
x, and 8 the corresponding polar angle. The difference between R and the distance 
rsy that appears in the surface potentials is shown in figure 3. 

The gradient of on the surface of the cylinder is 

(Vq51)R-a = (2Usin28, -2Usin8cos8). (45) 

The proposed potentials to the first order of approximation in K* = k,pU/,ua for 
q5: and $: at any point ~ € 5 2 ,  and 5 ~ 5 2 ~  respectively, given by ( 2 5 ) ,  can be written 
here as 

where x is a fixed point ( R  cos 8, R sin 8) in the exterior or interior domains according 
to whether $Go or &', are taken into account respectively, and y is a moving point 
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(acosq, as inq)  on the surface of the cylinder with outward normal (cosq, sinq) 
a t  y. Therefore the kernel in equation (46) can be written as: 

- (  a 1+R’2-2Rcos(0-q) ’ ) (47 ) 
cos pXy, n(y)) - 1 i - R‘ cos (e+ 

TXY 

where R’ = R/a;  a t  the point x = x*, with x* on the body surface, the above relation 
for the kernel becomes 

Substituting (45) and (48) into the two-dimensional version of (32), the following 
integral equation for vo(0)  is obtained: 

where f(0) = -iUa+2Ua sin20. (50) 

Integrating (49) between the limits (0,2x), it is found that 

which leads to an explicit solution of (49) : 

Substituting (50) into (52), there results 

vo(0) = -$Ya+BUa sin20. (53)  

Substituting (53) together with (47) into (46) for a point x = (R, 0) E fie, one gets 

1 - R‘ cos pP) 
I,(R, 0 )  = ?@ sin2 q dq: 

R 1 + Rf2 - 2R’ cos (0 - p) 

3 ua,ro2n i--R’cos(e-p) 
12(R, 0)  = -- - d q  = 0, 4 R 1 + R ’ 2 - 2 R ’ ~ ~ ~ ( 0 - i p )  

since the last integral is equal is equal to the plane angle subtended by the 
circumference R = a a t  a point x, and when the point x is outside a closed curve, as 
in the present case, this angle is identically equal to zero. To evaluate I ,  the following 
change of variables will be used: 

Therefore 

(55) 

where the integration is carried out around the unit circle in the complex plane. By 

{ ~ z ~ - c o s ~ ~ ( z ~ +  1)-isin20(z4-1)} (2z-R’z2-Rf)dz 
z3(2+ R’2~- Rfz2- R’) 
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Ua f - n  
1, = - Z Res (a,), 

2 k-1 

where Res(a,) are the residues of the rational complex-function integrand of I 1  at 
the poles a,; this integrand has a pole of order 3 a t  z = 0 and simple pole at  z = 1/R' 
inside the unit circle, since 

1 
( i) R' z+R'2z-R'z2-RR' = R'(R'-z) z--, and - < 1 

when X E Q ,  (R > a) .  
After evaluating the residues, (56) becomes 

Therefore 

cos 20 
I l ( R , 8 )  = Ua3- 

R2 
( R  > a). 

a2 
R2 

$'&(R,6) = Ua-cos20. 

(57) 

Also, substituting (53) together with (47) into (46) for a point xeQi, one obtains 

$;o(R> 0 )  = JI(R7 0 )  + J,(& 0 ) ,  

J,(R,  0 )  = 4 ( R >  0 )  

(59) 
where 

and J2(R,  8)  = -- 3 - Ua s,"" 1 - R' cos (0-p) 
dg,=-- ; ua,  

4 K 1 + R ' 2 - 2 R ' ~ ~ ~ ( 0 - ~ )  

since the plane angle equals 27c when the point x is inside the closed boundary curve, 
i.e. for X E S L , .  Hence J l (R ,  0 )  is given by (55), but the function to be integrated this 
time has a simple pole at z = R', since R' < 1 when z€SLi (R < a) ,  and the same pole 
at z = 0;  with this change in the simple pole, the evaluation of the residues change 
in such manner that J l (R ,  8) gives 

Therefore 

R2 
a2 

J,(R,B) = -Ua--ccos28+2Ua ( R  < a) .  

R2 
a2 

&'o(R,8) = @a- Ua-cos20. 

Substituting (44), (58) and (61) into (9) and (22), one finally gets 

a2 

R2 

(1 R2 c;; 20)) q5i(x) = K*Ua -- + O(K*2) 

$(x) = URcos0 + K * U a - c 0 ~ 2 0 + 0 ( K * ~ )  

for x E SL,, and 

for sea, ,  solutions that are harmonic outside and inside the circular cylinder 
respectively; $ tends to uniform flow at infinity, and it is easy to prove that (62) and 
(63) satisfy the matching conditions (7)  and (8) as a first approximation: 

= - 2K* U cos 28 + O(K*2), 
aR R - a  

= -2K*Ucos20+O(K*2) 
aR R=a 
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and 

FIQURE 4 

- r" q5i I = pU2($- cos 28) + O(K*), 
Ko R-a 

As one can see, the exterior potential given by (62) consists of the sum of a uniform 
flow, a dipole (doublet potential) and a quadrupole. The flow pattern for the exterior 
flow is similar to the one shown in figure 4. 

The above solutions for $ and q5i given by (62) and (63) respectively can be found 
in an elementary way using cylindrical harmonics, profiting from the nice boundary 
geometry of the present problem. The awkwardness of the approach used in this 
section compared with the cylindrical-harmonics solution is natural owing to the 
generality of the proposed method, which sets no major restrictions on the body 
shape. 

In order to evaluate the hydrodynamic force exerted on the porous body by the 
exterior potential flow, one substitutes (45) and (58)  into (42) and, letting ex, ey denote 
unit vectors along the positive x- and y-axes, one finds 

F = K*p { - 4U2a lo2' sin2 8 cos 28 d8 ex + 4U2a s,'" sin 8 cos 8 cos 28 d8 eu} (64) 

or 

with u = p/p.  
Therefore only a drag force is exerted on the porous cylinder, as is to be expected 

from physical considerations, and this force is independent of the size of the 
cylinder. This remarkable fact, independence of the force on the cylinder size, is 
common to the well-known case of uniform potential flow past a two-dimensional 
non-permeable cylinder plus an arbitrary vortex located inside the cylindrical 
body with intensity I'/2n, where the combined flow exerts a lift force FL given by 
Kutta-Joukowski as FL = PUT. 
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